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Abstract

Brain graphs provide a relatively simple and increasingly popular way
of modeling the human brain connectome, using graph theory to ab-
stractly define a nervous system as a set of nodes (denoting anatomi-
cal regions or recording electrodes) and interconnecting edges (denot-
ing structural or functional connections). Topological and geometrical
properties of these graphs can be measured and compared to random
graphs and to graphs derived from other neuroscience data or other
(nonneural) complex systems. Both structural and functional human
brain graphs have consistently demonstrated key topological properties
such as small-worldness, modularity, and heterogeneous degree dis-
tributions. Brain graphs are also physically embedded so as to nearly
minimize wiring cost, a key geometric property. Here we offer a con-
ceptual review and methodological guide to graphical analysis of human
neuroimaging data, with an emphasis on some of the key assumptions,
issues, and trade-offs facing the investigator.
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Graph: a model of a
complex system
completely defined by
a set of nodes or
vertices and the edges
or lines drawn between
them; mathematical
theory of random
graphs originated with
Euler and later Erdös
and Renyi in the
1950s. Analysis of
nonrandom graphs has
grown rapidly as an
aspect of complexity
science in the past
20 years
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WHAT IS A BRAIN GRAPH?

A brain graph is a model of a nervous system
as a number of nodes interconnected by a set
of edges. For example, the edges can repre-
sent functional or structural connections be-
tween cortical and subcortical regional nodes
based on analysis of human neuroimaging data.
Once a brain graph has been constructed by
defining the nodes and edges, its topological
properties can be measured by a rich array of
metrics that has been developed recently in the
field of statistical physics of complex networks
(Albert & Barabási 2002) and historically built
on the concepts of graph theory (Erdös &
Rényi 1959). Since the nodes of a brain graph
can be spatially localized, or physically em-

bedded, its geometrical properties can also be
estimated and potentially related to network
topology.

To date, most such human brain graphs
have specified binary connectivity—the edges
between nodes are undirected and unweighted;
see Figure 1. The construction of such binary
brain graphs is the focus of this article, although
we also briefly describe the construction of di-
rected and/or weighted brain graphs.

WHY BOTHER WITH BRAIN
GRAPHS AS MODELS OF THE
HUMAN BRAIN CONNECTOME?

Brain graphs are simple models of the real un-
derlying connectome (Sporns et al. 2005). They
are properly based on a number of more-or-
less explicit, and more-or-less realistic, tech-
nical assumptions. For example, we will usu-
ally assume that the nodes are independent and
internally coherent, and we may also assume
that all the edges signify the same strength of
connection between nodes. Such assumptions
inevitably entail some loss of information in
the resulting graphs compared to the multivari-
ate datasets from which they were constructed.
However, the technical constraints and robust
simplifications of graph theoretical analysis, ap-
plied to human neuroimaging data, are worth
it—arguably—for two strategic reasons: gener-
alizability and interpretability.

Generalizability

Graph theoretical analysis is potentially ap-
plicable to any scale, modality, or volume
of neuroscientific data (Bassett & Bullmore
2006, Bullmore & Sporns 2009, Sporns,
2010). We can say this with some confidence
because graph theory has already proven to be
applicable to a considerable diversity of com-
plex systems, including markets, ecosystems,
computer circuits, and gene-gene interactomes
(Barabási 2009). Some of these systems have
been graphically modeled on a much bigger
scale than has so far been attempted for ner-
vous systems. For example, graph models have
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been constructed for the World Wide Web
comprising up to 200 million nodes (Websites)
and 1.5 billion edges (links) (Barabási & Albert
1999, Broder et al. 2000); and for the brain gene
transcriptome, comprising up to 20,000 nodes,
each representing expression of genetically
specific mRNA, with each edge representing
significant coexpression of mRNA related to
a pair of genes (Oldham et al. 2006). Thus,
graph theory potentially provides a common
language for the analysis of complex systems
in general, and we expect to be able to use it to
describe some of the key topological properties
of nervous systems from the cellular scale of the
neuronal connectome, exemplified by that of
the nematode worm, Caenorhabditis elegans, to
the whole-brain scale of human neuroimaging
data.

Within the domain of human brain map-
ping, graph models have now been reported
for all major modalities of magnetic resonance
imaging (MRI) and neurophysiological data.
Functional brain graphs have been constructed
from functional MRI (fMRI) (Achard &
Bullmore 2007, Achard et al. 2006, Eguı́luz
et al. 2005, Liu et al. 2008, Salvador et al. 2005a,
van den Heuvel et al. 2008), electroencephalog-
raphy (EEG) (Micheloyannis et al. 2006, Stam
et al. 2007a), and magnetoencephalography
(MEG) data (Bassett et al. 2006, Deuker et al.
2009, Stam 2004). Structural brain graphs
have been constructed from diffusion tensor
imaging (DTI) or diffusion spectrum imaging
(DSI) (Gong et al. 2008, Hagmann et al. 2008)
and conventional MRI data (Bassett et al.
2008, He et al. 2007). This degree of gener-
alizability immediately supports comparison of
topological parameters between structural and
functional networks. For example, it has been
discovered that fMRI and DTI brain graphs
consistently demonstrate some common global
topological properties (Honey et al. 2009, Park
et al. 2008, Skudlarski et al. 2008, Zalesky &
Fornito 2009; see Figure 1), including:

� small-worldness—indicating a balance
between network segregation and
integration,

Topology: spatial
properties that are
invariant under
continuous
deformation are
topological aspects of a
system. In brain
graphs, topological
analysis considers the
connectivity between
nodes regardless of
their physical or
anatomical locations

Connectivity: a
measure of association
between neurons or
brain regions. In
human neuroimaging,
functional connectivity
means that two regions
demonstrate similar
dynamics over time,
whereas effective
connectivity means
that one region has a
causal effect on
dynamics in another
region

Degree: the degree of
a node is the number
of edges connecting it
to the rest of the
network; the
distribution of degrees
over all nodes in the
network can be
described as a degree
(probability)
distribution. Brain
graphs typically have a
broad-scale degree
distribution, implying
that at least a few
“hub” nodes will have
high degree

� modularity—indicating a decomposabil-
ity of the system into smaller subsystems,
and

� heterogeneous degree distributions—
broad-scale or fat-tailed probability dis-
tributions of degree, indicating the likely
presence of network hubs or highly con-
nected nodes.

It is conceptually easier to link the brain
graphs derived from these different data types
to each other than it would be if each imag-
ing dataset were described in terms of some
modality-specific measure of association be-
tween regions, e.g., tractographic connection
probabilities from DSI or correlations be-
tween regional fMRI time series. Facilitat-
ing between-modality translation of results
can be important for methodological cross-
validation and, more fundamentally, for in-
forming our understanding of how functional
networks might interact with the substrate of a
relatively static structural network (Honey et al.
2009).

The generalizability of graph theory also
allows us to compare the topological properties
of large-scale or macro networks represented
by neuroimaging to those of small-scale or
cellular networks measured by microscopy or
microelectrode recording. This is potentially
important in defining organizational properties
of nervous systems that are conserved across
scales of space and time, and across different
species. More radically, the generalizability of
graph theory encourages the translation of new
ideas from analysis of nonneural complex sys-
tems, such as principles of high-performance
microprocessor design, to quantification of the
human brain connectome (Bassett et al. 2010).
We can thus begin to address questions such as,
what is special about the human connectome
compared to a variety of other complex,
information-processing systems? Do human
brain networks represent a singular pinnacle
of organizational complexity or are they one
of a universality class of superficially diverse
networks that share important topological
properties in common? These questions about
conservation of topological principles across
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Small-worldness:
originally
defined as the
combination of high
clustering and short
characteristic path
length; subsequently
also defined
as the combination of
high global and local
efficiency of informa-
tion transfer between
nodes of a network

Modularity: modular
networks are those
that are composed of
topological modules or
communities. A
module is defined as a
group of nodes that
have many
connections to other
nodes within the
module but few
connections to nodes
outside the module

Cost: a topological
definition of the cost of
a system is the number
of edges in proportion
to the total number of
possible edges; a
physical definition
weights the cost by the
geometric distance
between nodes. Brain
networks economize
(but do not minimize)
both topological and
physical costs

Efficiency: a word
with many meanings
but usually understood
as a measure of
information transfer
between nodes; a
network with high
global efficiency will
have a short
characteristic path
length. Cost-efficiency
relates the efficiency of
the graph to its cost or
connection density

information-processing systems are potentially
important because topological conservation
suggests that diverse systems have conver-
gently evolved to satisfy universal optimization
criteria. The identity and interdependence of
such putative network selection criteria are not
yet fully established, but plausible candidates
include minimization of wiring cost (a geo-
metric measure of physical distance between
connected nodes), maximization of efficiency
of information transfer (a topological measure
inversely related to path length between nodes),
hierarchical modularity, and high dimensional
interconnect topology (Bassett et al. 2010,
Robinson et al. 2009). Through the prism of
graph theory, we can begin to test ideas about
evolution and development of human brain
networks that are informed by what we know
about the selection of many other, perhaps
experimentally more tractable, networks.

Interpretability

Biological and behavioral interpretability is
always an issue in human neuroimaging. The
anatomical and physiological significance of
structural and functional MRI signals has
been extensively debated but not yet entirely
resolved (Lee et al. 2010, Lerch et al. 2006).
Imaging studies of brain systems or networks
inevitably depend on some measure of signal
association or covariation between regions,
but the neurobiological basis is not yet settled
for either interregional correlations in brain
structure estimated over subjects in MRI or
interregional correlations in brain function
estimated over time in fMRI. Lacking a
clear structural or physiological substrate for
changes in anatomical or functional connectiv-
ity, measured by statistical association between
regions at the systems level of neuroimaging,
it is difficult to predict how changes in such
descriptive statistics should be related to cog-
nitive or behavioral performance of the system.
For example, is it cognitively “good” or “bad”
to have a greater-than-average correlation
between a pair of fMRI time series represent-

ing, say, left middle frontal gyrus and right
hippocampus? Similarly, it is difficult to explain
why specific neuropsychiatric disorders, e.g.,
schizophrenia, have often been associated with
a profile of both abnormally increased and
decreased magnitude of connectivity across
different brain regions (Rubinov et al. 2009,
Whitfield-Gabrieli et al. 2009). Is less connec-
tivity always a sign of the disease process, and
more connectivity in a patient group always a
sign of a compensatory process, or can excess
connectivity be directly pathological?

The translation of modality-specific con-
nectivity statistics to topological measures
on brain graphs may help us to find more
secure cognitive and clinical interpretations
of neuroimaging systems. This proposition is
far from proven yet, although there are some
encouraging early signs in its favor. For exam-
ple, three recent studies—using fMRI (van den
Heuvel et al. 2009), MEG (Bassett et al. 2009),
and DTI (Li et al. 2009)—have indepen-
dently reported associations between general
intelligence or executive task performance
and topological measures of brain network
efficiency or cost-efficiency. In general, higher
cognitive performance has been associated with
brain graphs globally configured for greater
efficiency—speed and fidelity—of parallel
information transfer between regional nodes.
This observation is compatible with neuropsy-
chological theories that higher-order cognitive
functions depend on distributed processing
(Fodor 1983) across a large, integrated “neu-
ronal workspace” (Dehaene & Naccache 2001):
A network with higher global efficiency will
be more optimized as a cognitive workspace.
There have also been early reports that disease-
related changes in topological properties of
brain graphs can be related to other aspects of
the disorder in question. For example, reduc-
tions in network efficiency have been associated
with greater white matter lesion load in pa-
tients with multiple sclerosis (He et al. 2009a),
and reductions in nodal degree (the number of
edges connecting a regional node to the rest
of the brain graph) have been associated with
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greater severity of local amyloid deposition
in patients with Alzheimer’s disease (Buckner
et al. 2009). It is also notable that moderate
levels of heritability have been reported for
brain graph topology measured in a twin study
using EEG (Smit et al. 2008), suggesting that
there may be important genetic effects on
variation in brain graph metrics. Collectively,
these and other early results suggest that it will
be interesting to apply graph theory more ex-
tensively to the cognitive, clinical, and genetic
interpretation of neuroimaging systems.

Clinical Relevance

The organization of brain graphs is modulated
by an array of factors that varies throughout the
healthy population, including behavioral vari-
ability (Bassett et al. 2009), cognitive ability (Li
et al. 2009, van den Heuvel et al. 2009), shared
genetic factors (Smit et al. 2008), genetic infor-
mation (Schmitt et al. 2008), age (Meunier et al.
2008, Micheloyannis et al. 2009), and gender
(Gong et al. 2009). The architecture of an indi-
vidual’s connectivity is inherently dynamic, be-
ing altered by experimental tasks (Bassett et al.
2006, de Vico Fallani et al. 2008a) and drug
treatment (Achard & Bullmore 2007, Schwarz
et al. 2009).

Complex network theory is particularly
appealing when applied to the study of clinical
neuroscience, where many cognitive and
emotional disorders have been characterized as
dysconnectivity syndromes (Catani & ffytche
2005), as indicated by abnormal phenotypic
profiles of anatomical and/or functional con-
nectivity between brain regions. For example,
in schizophrenia, a profound disconnection
between frontal and temporal cortices has been
suggested to characterize the brain (Friston &
Frith 1995); in contrast, people with autism may
display a complex pattern of hyperconnectivity
within frontal cortices but hypoconnectivity be-
tween the frontal cortex and the rest of the brain
(Courchesne & Pierce 2005). In fact, a wealth
of clinical and disease states have recently been
shown to manifest themselves by abnormal

cortical graph organization: schizophrenia
(Bassett et al. 2008, 2009; Liu et al. 2008;
Lynall et al. 2010; Micheloyannis et al. 2006;
Rubinov 2009), Alzheimer’s disease (He et al.
2008, 2009a; Stam 2010; Stam et al. 2007a;
Supekar et al. 2008), epilepsy (Horstmann et al.
2010, Raj et al. 2010, van Dellen et al. 2009),
multiple sclerosis (He et al. 2009b), acute de-
pression (Leistedt et al. 2009), absence seizures
(Ponten et al. 2009), medial temporal lobe
seizures (Ponten et al. 2007), attention deficit
hyperactivity disorder (Wang et al. 2010),
stroke (de Vico Fallani et al. 2009, Wang et al.
2009), spinal cord injury (de Vico Fallani et al.
2008b), fronto-temporal lobar degeneration
(de Haan et al. 2009), and early blindness (Shu
et al. 2009). Together, these studies highlight
the extended clinical relevance of graphical
analysis of human neuroimaging data.

Caveats

So far we have emphasized the attractive sim-
plicity, generalizability, interpretability, and
clinical relevance of brain graphs. Now we re-
turn to our major caveat: graph analysis of neu-
roimaging data is not “plug and play.” It is a
model building exercise, entailing arbitrary as-
sumptions and decisions, which can have influ-
ential effects on the results of the analysis. It
is also relativistic: Many of the results from a
brain graph will need to be calibrated by com-
parison to the extreme bounds of random and
regular graphs (see Figure 1), e.g., to quantify
small-worldness of the brain networks, or we
may wish to compare one group of brain graphs
to another. How best to compare topological
metrics between graphs is not a trivial ques-
tion. In addition to these relatively specialist
questions about construction and comparison
of brain graphs, any approach to systems anal-
ysis of neuroimaging data also raises a number
of issues about data acquisition and preprocess-
ing, statistical hypothesis testing and multiple
comparisons, visualization, etc. In what follows,
we attempt to address some of these caveats in
greater detail.
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HOW TO CONSTRUCT A
BRAIN GRAPH

The two key questions to address in construct-
ing a graphical model of a brain network are,
(a) What is a node, and (b) What is an edge?

What Is a Node?

Before we describe the previously used defini-
tions of nodes in neuroscience and neuroimag-
ing, it is important to describe what properties
a node should have in general (Butts 2009). In
graphical models, a node is a portion of the
system that is separable from the other por-
tions of the system in some way; i.e., nodes are
meant to be inherently independent or distinct
in the system under study. To put it another
way, the interactions between nodes will be-
come continuously less meaningful the more
similar the nodes are to each other. In addition
to being independent, the nodes should be in-
ternally coherent or homogeneous, i.e., nodes
should be encapsulated informational compo-
nents that have internal integrity and external
independence (Butts 2008, 2009; Rubinov &
Sporns 2010).

Cellular systems. A cellular nervous system
has an immediately obvious graphical decon-
struction: each neuron can be considered an
independent and homogeneous node, and the
synapses between neurons can be considered
as edges. This is the intuitively straightforward
basis for the graphical analysis of the cellular
connectome of the nematode worm, C. elegans
(Bassett et al. 2010, Watts & Strogatz 1998),
which comprises about 300 cellular nodes and
about 7,600 synaptic edges. It has also been the
basis for graphical modeling of small-world
cellular networks in vertebrate brainstem
(Humphries et al. 2006). However, we note
that C. elegans is currently the only organism
for which the cellular connectome has been
completely described; graphical modeling of
cellular connectomes in other species will be
challenged by their greater size and variability,
and even in this most tractable case, graphical

analysis involves making choices about whether
all types of neurons should have equal status
as nodes [more than 100 classes of neurons are
recognized in C. elegans (White et al. 1986)].

Electrophysiological data. For graphical
analysis of neurophysiological data on elec-
tromagnetic fields, including microelectrode
recordings from cortical tissue (Yu et al. 2008)
as well as scalp electrode recordings in EEG or
surface sensors in MEG, it may be reasonable
to define each electrode or signal sensor as a
node. Defining nodes as MEG or EEG sensors
will preserve the native covariance structure of
the data, but without appropriate preprocess-
ing (Stam et al. 2007b), this will include strong
correlations between neighboring sensors due
to volume conduction of electrical activity from
a single source in the brain to multiple nearby
electrodes or sensors on the scalp surface. In
graphical terms, untreated volume conduction
will be represented by a regular lattice-like
structure of highly clustered connections
between spatially neighboring sensors, which
could clearly confound analysis of brain
network properties such as small-worldness.

An alternative approach is to reconstruct the
sensor data in terms of anatomically located
sources and define each source as a node (Palva
et al. 2010a,b). This allows the operator some
discretion in how many nodal sources should
be reconstructed from a fixed number of sen-
sors, and it deals with the issue of volume con-
duction. However, it is also important to bear
in mind that some source reconstruction algo-
rithms, such as the synthetic aperture magne-
tometry beamformer, solve the inverse problem
by diagonalizing the sensor covariance matrix to
render sources as statistically independent from
each other (see, e.g., Cheyne et al. 2006). This
is obviously unlikely to represent an optimal
starting point for an analysis of functional con-
nectivity between sources. Other reconstruc-
tion algorithms assume stationarity (constant
mean and variance over time) of the time series,
which is unlikely to be realistic over the dura-
tion of a typical experimental recording (from
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tens to thousands of seconds) (Kowalik & Elbert
1994).

Thus we can see that a preprocessing step
(source reconstruction) that might seem attrac-
tive for defining the nodes of an MEG network
could have severe effects on the covariance be-
tween nodes that will later be used to define
the edges of the network (Vrba & Robinson
2001). Most graphical studies of neurophysio-
logical data so far have used sensors as nodes
(Bassett et al. 2006, 2009; Stam 2004, 2010),
implicitly sacrificing anatomical resolution and
independence of nodes for greater data fi-
delity of edges representing covariation be-
tween nodes. This trade-off has not been ex-
tensively studied in terms of its impact on
statistical properties of graph metrics derived
from neurophysiological data. It seems clear
from preliminary work that headline prop-
erties of human brain functional networks—
such as small-worldness and broad-scale de-
gree distributions—are qualitatively conserved
whether network nodes are defined as sources
(Palva et al. 2010b) or sensors (Deuker et al.
2009), but this is an area where there is likely to
be further significant methodological develop-
ment in the future.

Tract-tracing and MRI data. For graphi-
cal analysis of tract-tracing data on large-scale
axonal projections between regions of mam-
malian cortex, nodes have usually been de-
fined cytoarchitectonically as Brodmann areas
(Hilgetag et al. 2000; Scannell et al. 1995, 1999;
Young 1992, 1993). In some of the early graph-
ical studies of human neuroimaging data, an
approximately equivalent convention was fol-
lowed to define nodes (Achard et al. 2006,
Bassett et al. 2008, Wang et al. 2008). Each in-
dividual’s brain image was coregistered with an
anatomically parcellated template image, and
the mean signal over all voxels in each region of
the template image was taken as the nodal value
at that anatomical location. Several similar but
not identical template images are available (see
Related Resources) and have been used for this
purpose. It has been shown that use of different
anatomical templates for analysis of the same

imaging data can lead to subtly different graph-
ical results (Wang et al. 2010). It has also been
suggested by analysis of simulated fMRI data
that specification of functionally, rather than
anatomically, defined nodes may improve fi-
delity of functional network modeling (Smith
et al. 2010).

The main advantage of using an anatomi-
cally defined template for nodal parcellation of
neuroimaging data is that it can support direct
comparison of results to prior neuroimaging or
primate neuroanatomy studies using the same
or a similar template. The main disadvantage,
which is probably more significant, is that
the size of different template regions can vary
considerably. For fMRI analysis, for example
in the Automated Anatomical Labeling (AAL)
template (Tzourio-Mazoyer et al. 2002)
(Figure 2), the middle frontal gyrus region
comprises many more voxels than the hip-
pocampus region. Nodal values obtained by
averaging across many voxels in larger regions
will be less noisy than nodal values estimated by
averaging across smaller regions, leading to a
bias in favor of stronger statistical associations
between larger regions of the template image
(Salvador et al. 2008). One way of dealing
with this bias is to randomly sample the same
number of voxels in estimation of each nodal
value, but this is likely to mean that larger
nodes are less internally coherent.

An increasingly preferred approach to defi-
nition of nodes in fMRI data has been to stip-
ulate that each node should comprise an equal
number of voxels and that nodes should collec-
tively cover the brain without prior anatomical
information being used to guide their size or
location (Zalesky et al. 2010b). If this approach
is adopted, the key parameter to choose is the
spatial size of each node, which can range from
a minimum of 1 voxel to a maximum in the or-
der of 104 voxels. We can see immediately that
each spatial scale represents a trade-off between
the defining nodal properties of independence
and coherence: Single voxel nodes will be more
coherent but less independent of each other (to
the extent that the image is spatially smooth),
whereas larger nodes, located regardless of
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approximate cytoarchitectonic fields, will be
less coherent but more independent.

There has been limited systematic explo-
ration of the effect of nodal size on overall
network properties. A few fMRI studies
adopting the minimum nodal size of one voxel
have reported scale-free or power law degree
distributions of the resulting networks (Eguı́luz
et al. 2005, van den Heuvel et al. 2008), whereas
the majority of fMRI and MRI studies using
anatomical templates with larger nodes have
reported exponentially truncated power law
degree distributions (e.g., Achard et al. 2006).
This indicates that some network properties,
such as the form of the degree distribution,
may be qualitatively affected by the size of the
nodes—in this case, voxel nodes leading to net-
works with a larger probability of very highly
connected hubs. It is not yet clear whether this
apparent difference in degree distributional
properties as a function of the spatial scale of
network nodes reflects a biological difference
in network organization at different spatial
scales or the reduced independence of voxel
nodes that are small compared to the spatial
smoothness of the image. However, a study
of anatomical networks derived from the same
set of DTI and DSI data as nodal size was
continuously increased from small nodes,
comprising a local cube of {3 × 3 × 3} voxels,
to large nodes, comprising {100 × 100 ×
100} voxels, found that the form of the degree
distribution and other topological properties
were quite consistently expressed across scales,
although the quantitative values of topological
parameters were scale dependent (Zalesky et al.
2010b).

Another factor to take into consideration
when deciding the size of nodes is that smaller
nodes will naturally be more numerous, and hy-
pothesis testing of nodal statistics, e.g., to pro-
duce a cortical surface map of between-group
differences in nodal degree, will require a larger
number of statistical tests and therefore more
stringent multiple comparisons corrections. In
other words, the greater spatial resolution of
local network properties conferred by smaller
nodes comes at the cost of more conservative

significance thresholds to control type I (false
positive) error in the context of multiple com-
parisons. This is a familiar trade-off in the con-
text of mass univariate statistical testing for clas-
sical brain activation mapping.

What Is an Edge?

We have seen that there is no absolutely correct
or straightforward answer to the question of
defining nodes. The question of how to define
edges in a brain graph is even more open to
a variety of legitimate choices. As before, the
case of C. elegans can provide a deceptively
simple template: The edges in this cellular
connectome are usually defined as the synapses
between neurons, which are highly reliable
between different worms and have been exactly
described (White et al. 1986). But should
electrical and chemical synapses be given equal
weight as edges? Should the directionality of
chemical synapses be respected by specification
of directed edges in the corresponding graph?
In practice, most graphical analyses of C. elegans
have adopted the simplest possible choice—all
synaptic connections are represented as undi-
rected and unweighted (or equally weighted)
edges—but this is clearly not the only possible
choice. When we turn to the graphical analysis
of neuroimaging, neurophysiological, and
other data where we lack a “ground truth”
knowledge of the physical connections be-
tween nodes, a reasonable specification of
edges becomes more challenging.

To explore the methodological issues
in this context, we consider the illustrative
example of building a graph model for the
human functional connectome based on a
single fMRI dataset (see Figure 2A). Several
questions immediately arise; e.g., under what
experimental conditions should the data be
recorded, and how should they be preprocessed
prior to graph analysis? To date, most graph
models of fMRI data have been based on
data recorded with participants lying quietly
in the scanner, at rest. However, there is no
reason in principle why graphs could not be
constructed from data recorded while subjects
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perform experimentally controlled cognitive
tasks; indeed, this strategy is likely to become
more popular in the future, as attention focuses
on the question of how graphical parameters
of functional network organization can be
related to cognitive performance (see Future
Issues and Palva et al. 2010a for an example of
task-related network analysis using MEG).

For resting-state data analysis, one com-
mon question is how long a functional MRI
time series should be to support investigation
of functional associations and networks. From
a strictly technical point of view, a larger num-
ber of time points will generally improve the
precision of time series model parameter esti-
mates. The frequency bandwidth of a digital
time series process is limited by the Nyquist fre-
quency ( fN = fS/2, where fS is the sampling
frequency) at the upper end and by the length of
the time series at the lower end ( fmin = 1/T ,
where T is the number of time points in the
series). Within these limits, higher-frequency
components will generally be estimated with
greater precision than low-frequency compo-
nents (Achard et al. 2008). In fMRI, inter-
est is often focused on a low-frequency range
<0.1 Hz, which is considered to be more purely
representative of neuronal (noncardiorespira-
tory) sources of (co)variation, and the sampling
interval is typically on the order of seconds.
These considerations indicate that fMRI time
series will ideally be recorded over at least 5 to
10 minutes (Van Dijk et al. 2010), and longer
time series (about 30 minutes) have been re-
ported (Achard et al. 2006). However, very
long periods of fMRI recording may be diffi-
cult for subjects to tolerate without excessive
head movement or changes in brain state such as
falling asleep. In general, basing functional con-
nectivity or network analysis on very long peri-
ods of time series, although technically prefer-
able, incurs the assumption that brain func-
tional systems are in the same (stationary) state
over the period of observation, which becomes
increasingly implausible as the length of obser-
vation increases. The assumption of stationar-
ity also arises if several short segments of fMRI
time series, e.g., the resting-state epochs of a

classical blocked periodic activation paradigm,
are concatenated to form a composite time se-
ries for connectivity and network analysis (Fair
et al. 2007). This procedure assumes that the
brain is in approximately the same functional
state before and after performance of cogni-
tive tasks, although there is some evidence that
endogenous brain dynamics recorded immedi-
ately after effortful task performance may be
different from the dynamics preceding task per-
formance (Barnes et al. 2009).

In addition to the question of time series
length, there are multiple preprocessing steps
commonly applied in fMRI analysis that will
likely have as yet incompletely characterized
effects on functional brain graphs. For ex-
ample, nodal time series are often corrected
for head movement and for other “nuisance
covariates,” such as global brain or white
matter mean fluctuations, before estimation
of association metrics (Poldrack et al. 2008).
Such preprocessing steps can significantly alter
the specificity, strength, and localization of
measured functional associations and therefore
may substantially alter the topology of brain
graphs derived from the association matrices
(Murphy et al. 2009, Van Dijk et al. 2010,
Weissenbacher et al. 2009).

However, many of these issues concerning
data acquisition and preprocessing are generic
to fMRI studies of brain functional connectiv-
ity and are not uniquely problematic from the
perspective of graph analysis. To focus more
specifically on the issues arising in graph analy-
sis, we use a representative single fMRI dataset
(results shown in Figure 2A), acquired over
the course of about 37 minutes (equivalent to
2,048 time points at each voxel) from a healthy
volunteer in the resting state. The data were
preprocessed to correct voxel times series for
head movement and slice timing offsets, then
regionally parcellated using the AAL template
(Tzourio-Mazoyer et al. 2002), which defines
90 cortical and subcortical regions; method-
ological details are described in Achard et al.
(2006). Thus, the dataset available for graph
analysis comprised a {N × T} or {90 × 2048}
multivariate time series (see Figure 2A).
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Association matrix: a
matrix of connectivity
measures between
each possible pair of
the nodes in the
system; applying a
global threshold to an
association matrix to
generate a binary
adjacency matrix is the
simplest and most
frequently used
approach to graph
analysis of human
neuroimaging data

Functional association. Given a multivariate
time series like an fMRI dataset (or an MEG
or EEG or MEA recording), the first signif-
icant choice we have to make is how to de-
scribe the statistical association between each
nodal time series. In general, we estimate the
pair-wise association ai, j between the ith and
jth nodes, i �= j = 1, 2, 3, . . . , N and compile
these statistics for all possible pairs in a {N ×
N} interregional association matrix, A (see
Figure 2A,B). Many measures of association
could be used for this purpose, and they can be
categorized by various criteria. Following Fris-
ton (1994), we can distinguish measures of func-
tional connectivity, such as correlation coeffi-
cients, from measures of effective connectivity,
such as path coefficients. A functional connec-
tivity statistic measures the extent to which two
processes behave similarly over time; an effec-
tive connectivity statistic measures the extent to
which one process can be predicted or explained
by the other. Thus, the association matrix gen-
erated by estimating the functional connectivity
between each pair of nodes will be symmetric,
whereas the association matrix generated by an
effective connectivity analysis need not be. To
date, almost all graphical analyses of fMRI data
have been based on a symmetric association ma-
trix generated by some measure of functional
connectivity between nodes; however, there is
no reason in principle why methods of effective
connectivity analysis, such as path analysis or
dynamic causal modeling, could not be used as
the statistical basis for a functional brain graph.

Moreover, this distinction between func-
tional and effective connectivity, although
influential, does not exhaust the ways in which
various association measures can be distin-
guished (David et al. 2004). Some measures of
functional connectivity, such as the correlation
coefficient, will only capture linear interactions
between time series, whereas other measures,
such as the mutual information (Bassett et al.
2009), phase synchronization (Kitzbichler
et al. 2009, Palva et al. 2010a), or synchroniza-
tion likelihood (Stam 2004), are sensitive to
both linear and nonlinear interactions. Some
measures are sensitive to association between

nodal time series subtended by a specific fre-
quency interval, such as the wavelet correlation
(Bullmore et al. 2004) or coherence in the
frequency domain (Salvador et al. 2005b).
Some measures, such as the partial correlation
(Salvador et al. 2005a) or partial coherence
(Salvador et al. 2005b), are particularly sen-
sitive to the specific association between each
pair of nodes and will discount third-party
effects, such as shared inputs from a third node
or global mode of covariation.

We cannot offer definitive guidance about
which of these or other possible association
statistics is “best” for the purposes of graph
analysis [though see David et al. (2004) and
Smith et al. (2010) for evaluation of multiple
possible connectivity metrics in the context
of simulated data]. But we can offer some
general suggestions about how to deal with
this moment of choice. First, it is wise to bear
in mind the nature and limitations of the data,
and the hypothetical question of interest. In
our illustrative example, we have a resting state
fMRI data matrix where the number of time
points (2,048) is about one order of magnitude
greater than the number of nodes (90). Under
these circumstances, it is probably advisable to
start with a simple measure of stationary associ-
ation, especially if focusing on a low-frequency
interval, e.g., ≤0.1 Hz, to mitigate nonneuronal
contributions to covariation between nodes. If
the time series were longer, it might be more
attractive to look at dynamic or nonstationary
aspects of association; if the number of nodes
was smaller relative to the number of time
points, more sophisticated measures of associ-
ation such as dynamic causal modeling might
be computationally tractable; if the data had
been acquired during performance of multiple
discrete cognitive trials, rather than at rest, it
might be interesting to measure the correlation
of event-related response amplitude between
nodes (Yoon et al. 2008).

Whichever measure of association is cho-
sen, our second piece of general advice would
be to look at the association matrix carefully
before proceeding to graphical analysis (Figure
3A,B). Several simple exploratory analyses may
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be informative and will build a preliminary
understanding of the data before they are more
abstractly represented by a graphical model.
For example, it may be useful to calculate the
grand mean of the association matrix and, for
each node, its mean association with the rest
of the matrix: we refer to these as measures of
the strength of association. The mean strength
of association for the ith node is simply
āi,. = 1

N

∑
j ai, j . It may also be useful to con-

sider the between-node variation in strength
of association and the within-node variation of
association to all other nodes in the system: We
can refer to these as measures of the diversity
of association. It can also be informative to use
principal component (PC) analysis to identify
major modes of covariation between multiple
nodes; for example, the ratio of the first
eigenvalue, λ1, to the sum of other eigenvalues
can provide a measure of the global integration
of the system I = λ1∑N

2 λ j
(Lynall et al. 2010,

Tononi et al. 1994). Many other exploratory
multivariate techniques could be used at this
stage.

The basic idea is to get acquainted with the
association matrix in relatively simple terms
before it is transformed to an adjacency matrix
and described topologically. Such an incre-
mental approach will generally prevent us from
thinking about the results of graphical analysis
as the output of a “black box” procedure and
will likely be predictive of some of the key topo-
logical results. For example, the most highly
connected nodes or hubs of a brain graph
will typically be those nodes with the highest
mean strength of connectivity (Figure 4).
The value of preliminary exploratory analysis
is particularly clear when we are dealing
with several individual association matrices
representing brain systems in subjects drawn
from different patient groups or studied under
different experimental conditions (see below).

Structural association. Conceptually iden-
tical approaches can be taken to the graphical
analysis of structural networks derived from
measures of anatomical connectivity between

nodal regions. Anatomical connectivity can be
defined in different ways, based on different
kinds of MRI data. For diffusion tensor or
spectrum imaging, it is possible to assign a
probability of axonal connection between any
pair of gray matter regions on the basis of
tractographic analysis of an individual dataset.
For conventional (e.g., T1-weighted) MRI
data, anatomical connectivity has been inferred
by thresholding a matrix of interregional
covariation in cortical thickness or volume of
multiple regions (Bassett et al. 2008, He et al.
2007) (see Figure 2C). Strong between-subject
covariation in local gray matter measurements
has been interpreted as indicative of axonal
connectivity between covarying regions, on
the grounds that connectivity has mutually
trophic effects on the growth of connected
neurons or regions, leading to correlations in
the size of the regions when they are measured
after a period of development (Mechelli et al.
2005, Wright et al. 1999). This is not the only
possible interpretation—as noted, the cellular
substrates for many neuroimaging phenomena
are unresolved—but there is some empirical
evidence that regions with high gray matter
covariation measured in conventional MRI also
have a high probability of being connected by
axonal projections inferred from tractographic
analysis of DTI or DSI data (Lerch et al. 2006).

Both MRI and DT/SI-based anatomical
networks have their limitations. The main
drawback of MRI-based anatomical connectiv-
ity analysis, besides the question of its cellular
substrate, is that it depends on covariation over
individual subjects. Precise estimation there-
fore demands MRI data, ideally on hundreds
of subjects, to yield a single association matrix,
and thus a single network, for the whole group.
This precludes analysis of how individual
differences in anatomical network organization
might be associated with other individual
differences, such as variability in performance
of a cognitive task. In contrast, the main advan-
tage of DT/SI-based anatomical connectivity
analysis, in addition to its more clearly defined
cellular substrate, is that an association matrix
can be estimated for each subject, where ai, j

www.annualreviews.org • Brain Graphs 123

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
1.

7:
11

3-
14

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
xo

Sm
ith

K
lin

e 
E

nt
er

pr
is

e 
on

 0
3/

31
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



CP07CH05-Bullmore ARI 9 March 2011 21:34

denotes the connection probability between
regions i and j estimated by some tractography
algorithm (Hagmann et al. 2008, Iturria-
Medina et al. 2007). This allows investigators
to explore associations between measures on
individual anatomical networks and other indi-
vidually variable measures, such as functional
networks derived from fMRI, or cognitive vari-
ables such as IQ scores or executive function,
or clinical variables such as white matter lesion
load in patients with multiple sclerosis.

The main current disadvantage of DT/SI-
based networks is that tractography on
available data seems generally to underestimate
the probability of connections between regions
that are a long distance apart in the brain.
This is because long-distance projections are
more likely to intersect with other, differently
orientated projections, and it is more difficult
to trace the course of a single tract in the con-
text of crossing fibers. More recent acquisition
sequences, such as the HARDI sequence for
DSI, have been shown to generate networks
with a higher probability of long-distance con-
nections than older, classical DTI sequences
(Zalesky et al. 2010b). Foreseeable improve-
ments in diffusion data acquisition and analysis
tools can be expected to produce high-quality
anatomical networks in single subjects.

Thresholding and connection density.
Having thus estimated an association matrix
from the data, the next crucial question is, what
kind of graph do we wish to construct from the
association matrix? We will continue to illus-
trate possible solutions in relation to a func-
tional association matrix based on our illustra-
tive fMRI dataset, but many of the issues apply
directly to graphical analysis of other associa-
tion matrices. As already noted, most investiga-
tors using fMRI for this purpose to date have
estimated a measure of functional connectivity
between nodes, such as the correlation coeffi-
cient, and then thresholded the resulting asso-
ciation matrix A to create a binary adjacency
matrixA (Figure 5). We can describe this more
formally by saying that a threshold τ is applied

to each element ai, j of the association matrix,
and if ai, j ≥ τ , the corresponding element of
the adjacency matrix αi, j is set to unity; other-
wise, if ai, j < τ , αi, j = 0. If there is a nonzero
element in the adjacency matrix, this is equiva-
lent to saying there is an unweighted and undi-
rected edge between the corresponding nodes
of the network. In other words, the threshold-
ing operation on the association matrix will de-
fine the edges in the adjacency matrix and will
therefore have a strong influence on the topol-
ogy of the network. So a key subsidiary question
that arises is, what should be the value of the
threshold τ?

Let’s consider the limiting cases first, ini-
tially assuming for the sake of simplicity that
the association between each pair of nodal time
series has been described in terms of the ab-
solute correlation coefficient 0 ≤ |ai, j | ≤ 1. If
τ = 0, then all elements of the association ma-
trix will pass the threshold, all elements of the
adjacency matrix will be nonzero, all possible
edges in the graph will exist, and the connec-
tion density of the graph κ will be maximized.
We can generally define the connection density
or topological cost of the graph as

0 ≤ κ ≤ 1 = Eτ

N (N −1)
2

, (1)

where Eτ is the number of edges generated by
thresholding at some value of τ , and N (N −1)

2 is
the maximum number of edges that could exist
in a network of N nodes. Clearly, when τ = 0,
κ = 1. It should also be clear that if τ = 1
in this case, then no elements of the associa-
tion matrix will pass the threshold, all elements
of the adjacency matrix will have the value of
zero, there will be no edges in the graph, and
its connection density will be zero. The im-
portant generalization is that if the threshold
is set below the minimum value of the asso-
ciation matrix, the adjacency matrix will have
maximum connection density, whereas if the
threshold is set above the maximum value of
the association matrix, the adjacency matrix will
have minimum connection density, and as the
threshold is gradually increased from minimum
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to maximum values, this will result in monoton-
ically, but not necessarily linearly, decreasing
connection density of the graph (Figure 5).
Thus, we can describe any threshold on any
association measure in terms of the connec-
tion density or topological cost of the result-
ing graph, and this will always fall in the range
0 ≤ κ ≤ 1 (Stam et al. 2007a). We will see
that this translation from threshold value τ to
connection density κ is useful, but it does not
yet answer the question of which threshold(s)
to apply.

There are two broad approaches to thresh-
olding: We can search for a single, in some sense
optimal, threshold to apply to each association
to decide if it should be an edge and describe
the topological properties of the resulting net-
work only at that threshold (Achard et al. 2006,
He et al. 2007), or we can threshold the as-
sociation matrix at many different values and
describe the resulting network properties as a
function of changing threshold or connection
density (Achard & Bullmore 2007, Bassett et al.
2008).

One way to define a single threshold is
by controlling the probability of type I (false
positive) error on multiple hypothesis testing
of each element in the association matrix.
For example, in our illustrative example,
we have 4,050 unique elements of the as-
sociation matrix. We could set τ such that
Prob(ai, j > τ ) ≤ 0.05, which will result in
about 200 bidirectional nonzero elements in
the adjacency matrix under the null hypothesis.
More conservatively, we could set τ so as to
control the expected number of false positives,
or the false discovery rate (Genovese et al.
2002, He et al. 2007). These are both examples
of mass bivariate hypothesis testing, where a
statistical hypothesis is tested independently
for each of a large number of bivariate measures
of association between nodes. An alternative
approach may be to apply a preliminary statis-
tical threshold to each edge and then test the
null hypothesis at the level of suprathreshold
clusters of interconnected edges (Zalesky et al.
2010a). This is akin to the use of cluster-level

Clustering:
a measure of the
cliquishness of
connections between
nodes in a topological
neighborhood of the
graph; the nearest
neighbors of a highly
clustered node will
also be the nearest
neighbors of each
other. Related to local
efficiency and fault-
tolerance of the
network

statistics in classical fMRI activation mapping
(Bullmore et al. 1999), although in this case
clusters of edges are defined topologically
rather than clusters of voxels being defined by
spatial proximity, as in the classical case.

Our preference has been to explore network
properties as a function of changing threshold.
As the threshold is gradually relaxed, more
edges are added to the network, so it becomes
increasingly dense or less sparsely connected
(see Figure 4). The complex or nonrandom
topology of brain graphs is typically clearest
in relatively low-cost networks, i.e., those with
connection densities less than about 0.5. In this
first half of the possible cost range, increasing
connection density is associated with a dispro-
portionate increase in global and local efficiency
of network topology, and the small-world prop-
erties of the system are most clearly demon-
strated by comparison to random networks
(Figure 6). The greater-than-linear increase in
efficiency as a function of cost means that the
cost-efficiency difference is typically positive
and has a maximum value at connection density
about 0.3 (Achard & Bullmore 2007, Bassett
et al. 2009) (see Figure 6). At lower thresholds,
associated with connection densities greater
than 0.5, the law of diminishing returns seems
to apply. Addition of extra edges, or increasing
connection cost, is associated with relatively
modest increments of network efficiency; small-
world properties are less clearly delineated;
and the networks become indistinguishable
from random graphs at highest connection
costs.

This behavior allows us to define a small-
world cost regime as the range of connection
densities over which the network exhibits the
small-world characteristic: a clustering coeffi-
cient greater than the clustering coefficient of
a random network and a path length about the
same as the path length of a random network
(Humphries et al. 2006, Watts & Strogatz
1998); for mathematical definitions, see the fol-
lowing section on Measures on Graphs: Topo-
logical Measures. This definition of small-
worldness clearly requires that the experimental
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network be compared to random networks
and regular lattices (Bassett et al. 2010, Kaiser
& Hilgetag 2006, Watts & Strogatz 1998).
Each of these benchmark graphs has a different
degree distribution; that is, a node in each of
these networks will have a different probability
of being a highly connected hub. This degree
distributional variation could predispose the
network to have higher or lower values of
a given graph metric, such as the clustering
coefficient. It is therefore often useful to assess
whether the topological structure present in a
brain network under study is due to the degree
distribution alone or to additional architectural
constraints. Thus, it is common practice to
compare brain network properties to both (a) a
pure random network and (b) a random network
that has been constructed to retain the identical
degree distribution of the brain network under
study (Maslov & Sneppen 2002).

When random graphs are constructed over
a range of connection densities, it is found that
the network becomes fragmented, into a gi-
ant connected cluster and a number of smaller
islands, at a characteristic critical connection
density. Thus, for a random graph to be en-
tirely connected, the mean degree of the N
nodes needs to be at least 2× log(N ), or equiv-
alently, the connection density κ needs to be
at least (2 log(N ))N

N (N −1)/2 . We can say that there is
a percolation threshold, defined as the low-
est connection density at which the graph
becomes entirely connected and information
can percolate freely throughout the whole
system.

When brain graphs are constructed by
global thresholding over a range of connec-
tion densities, they also tend to become frag-
mented at lower connection densities (see, e.g.,
Figure 4). The percolation threshold is variable
between individuals and data types but is typi-
cally in the range 0.1 < κ < 0.5. The fragmen-
tation or percolation properties of networks can
be topologically informative in their own right
and are also closely related to measures of a net-
work’s robustness to random error or targeted
attack (Achard et al. 2006, Honey & Sporns
2008, Lynall et al. 2010). But this behavior also

alerts us to the fact that sparsely connected net-
works, which tend to be more complex or less
random topologically, will often comprise dif-
ferent numbers of fully connected nodes, and
this will need to be controlled when it comes
to comparing any topological metric between
networks. One simple way of controlling the
number of connected nodes is to measure graph
metrics only over the range of costs for which
all individual graphs are entirely connected
(Bassett et al. 2008, Lynall et al. 2010). How-
ever, if some of the individual networks have
high percolation thresholds, this may force
comparison of metrics over a less sparsely con-
nected cost range, where differences from ran-
domness will tend to be less salient.

An alternative to global thresholding for
graph construction may help to circumvent
some of these issues. For example, a graph can
be constructed from the minimum spanning
tree (MST) (Hagmann et al. 2008). The MST
fully connects N nodes with N − 1 edges,
with low connection density in the order of
N/N2. This means that the MSTs of any two
connectivity matrices will be guaranteed to be
entirely connected at sparse connection densi-
ties and therefore could support comparison of
topological metrics controlled for number of
edges and number of connected nodes over a
more interesting cost range than global thresh-
olding. However, MSTs are by definition
acyclic and will not demonstrate biologically
plausible clustering of connections between
topologically local nodes. Once the MST has
been defined as the “skeleton” of the brain
network, it must therefore be grown somehow,
e.g., by addition of extra edges that pass a global
threshold value, such that graph metrics can be
estimated over a full cost range of connection
densities, without any change in the number
of connected network nodes (Alexander-Bloch
et al. 2010). Minimum spanning trees and
related methods of graph construction may
prove to be advantageous as a technical basis
for comparing networks, matched for number
of nodes and edges, between different groups
or experimental conditions. However, there
are likely to be significant future developments
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concerning the optimal methods for filtering an
association matrix to construct a brain graph.

MEASURES ON GRAPHS

Brain graphs are models of physically embed-
ded information-processing networks. Each
node has an anatomical address in physical
space and a network role in topological space.
The brain as a whole is a high-performance
network—with many global topological prop-
erties in common with high-performance
computer chips, economic markets, and other
complex systems—physically embedded as a
sulco-gyrally convoluted sheet of processing
elements interconnected by a core of white
matter cabling.

There are therefore two main classes of
measure on brain graphs: topological and ge-
ometric. Topological metrics capture the rela-
tions between nodes regardless of their physical
location—an edge can count identically as an
edge whether it connects two locally neighbor-
ing nodes or a pair of nodes located far apart
from each other; a hub node with many edges,
or high degree, will count as a hub wherever
it is located. Physical metrics capture the re-
lations between nodes in Euclidean space and
will have continuous values in SI units. There
is obvious potential interest in understanding
the interaction between brain network topol-
ogy and geometry. There are many methods
by which topological and geometric measures
could be combined; for example, we can weight
topological edges by physical distance between
nodes for weighted network analysis. We con-
sider that this topo-physical mapping of brain
networks is likely to become of considerable in-
terest in the future, although it has not yet been
much developed.

Topological Measures

Because network analysis is based on the math-
ematical field of graph theory, there is a wealth
of previously defined metrics that can be used to
characterize the topological architecture of the
brain’s anatomical or functional connectivity.

These are parameters of global network organi-
zation, and many of them can also be estimated
at the single-node or edge level of the graph
(see Rubinov & Sporns 2010 for review).

Degree and degree distribution. Perhaps
the simplest topological measure is the degree
of a node, k, which is defined as the number
of edges emanating from that node. Degree,
sometimes called degree centrality, has been
used to discriminate between nodes in the
system that are well connected, i.e., so-called
hubs, and nodes that are less well connected, or
nonhubs (see Figure 1). Due to their relatively
increased connectivity, high-degree nodes are
likely to play an important role in the system’s
dynamics. The probability distribution for
nodal degree is the degree distribution of
the network. Brain graphs generally have
heterogeneous or broad-scale degree distribu-
tions, meaning that the probability of a highly
connected hub is higher than in a comparable
random network (see Figure 6C). Most studies
have found that an exponentially truncated
power law is the best form of degree distri-
bution to fit to networks based on functional
and structural MRI data. Some studies have
reported that the degree distribution of fMRI
networks follows a power law, which implies
that the probability of a highly connected hub
is higher than it would be if the degree distri-
bution were exponentially truncated. Different
degree distributions imply differences in net-
work growth rules. For example, a power law
degree distribution is compatible with growth
by a simple preferential attachment rule,
whereby each new node is more likely to form
connections with existing hubs, and there is no
limit to the number of connections a hub can
sustain; whereas an exponentially truncated dis-
tribution implies that there may also be physical
constraints on the number of connections that
any single node can sustain. It will be interesting
to explore computational models of network
growth more extensively in relation to emerg-
ing empirical data on brain network degree
distributions and other topological properties.
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Although degree provides a simple measure
of a node’s hubness, it is not the only measure
of a node’s significance for the flow of informa-
tion through the network. The complementary
metric of betweenness centrality describes how
many shortest paths between any two nodes
in the system must pass through the node in
question (Freeman 1977). A brain regional node
with high centrality is therefore potentially an
information bottleneck because it will be in-
volved in many of the shortest paths between
other regions of the whole brain network. Al-
though betweenness centrality is the oldest and
perhaps most used centrality measure, closeness
centrality, eigenvector centrality, and edge cen-
trality all provide similar but not identical infor-
mation regarding nodal importance (Lohmann
et al. 2010, Sporns et al. 2007). Centrality mea-
sures can also be estimated for each edge, as well
as for each node, in the network.

Small-worldness and efficiency. The two
metrics originally used to characterize the C. el-
egans neuronal system were the clustering coef-
ficient, which is a measurement of the efficiency
of local connectivity, and path length, which
is a simplified measurement of the global effi-
ciency of information transfer on the network
(Watts & Strogatz 1998) (see Figure 3C). As
described in a previous section, these two met-
rics enable us to define the small-world prop-
erty, in which the network exhibits a clustering
coefficient, C, greater than the clustering coef-
ficient of a random network, Cr ; a path length,
L, about the same as the path length of a ran-
dom network, Lr ; and therefore a small-world
scalar σ > 1 (Humphries et al. 2006, Watts &
Strogatz 1998), where

σ =
C
Cr
L
Lr

. (2)

It is important to note here that reporting a
small-world scalar σ > 1 is not enough to
prove small-worldness; both γ = C/Cr > 1
and λ = L/Lr ∼ 1 are also required. The
reason that the relation σ > 1 is not enough
to prove small-worldness is that it is possible
to have regular network structures with large

clustering coefficients (for example, giving γ =
3) but also long path lengths (for example giving
λ = 2), which together provide a σ value greater
than 1. In other words, regular-lattice-like net-
works may have small-world scalars σ > 1, and
so to prove small-worldness, both the γ and λ

values need to be reported.
The small-world scalar is dependent on

the calculation of a path length, which can be
troublesome for networks that contain one or
more disconnected nodes. The path length of a
disconnected node is infinity (it cannot transfer
information to any other node on the network),
and so the average path length of a network
that contains a disconnected node (such as
many fMRI networks at sparse threshold;
Achard et al. 2006) will also be equal to infinity.
In a complementary formalism, Latora &
Marchiori (2001) introduced the global ef-
ficiency as an alternative metric of global
integration that is inversely proportional to
the characteristic path length of the network,
thus allowing computation of a finite value for
graphs with disconnected nodes (Achard &
Bullmore 2007). In addition to the global effi-
ciency, Latora & Marchiori (2001) also defined
the local efficiency of each node, which is similar
but not equivalent to its clustering coefficient or
fault tolerance (see Figure 3D). Subsequently,
Achard & Bullmore (2007) defined the nodal
efficiency as inversely proportional to the path
length of connections between a single node
and every other node in the network. It can be
seen that there are many metrics that include
the word efficiency in their name, and care is
required to avoid terminological confusion.

As connection density increases, there will
be an increase in global efficiency for any
graph: More edges make it easier to get from
one node to another, but each extra edge adds a
marginal cost to the overall topological cost of
the network. In brain graphs, efficiency tends
to increase faster than linearly as connection
density is increased from zero to about 20%,
but at progressively higher costs, the extra
advantage in efficiency is less than the incre-
mental cost. This means that the difference
between global efficiency and topological cost,
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so-called cost-efficiency (Achard & Bullmore
2007, Bassett et al. 2009, Deuker et al. 2009), is
generally positive and has a maximum value at a
critical connection density, which is somewhat
variable between subjects but typically about
κ ∼ 0.3. The topological cost-efficiency of
brain networks is consistent with their classi-
fication as economical small-world networks
(Latora & Marchiori 2001, 2003).

Modularity. A brain graph can generally
be subdivided or partitioned into subsets or
modules of nodes (Chen et al. 2008, Meunier
et al. 2008). Finding the mathematically
optimal modular decomposition for a brain
network is not trivial, and several alternative
algorithms have been proposed. In general, the
aim is to find the partition that maximizes the
ratio of intramodular to intermodular edges.
Thus the nodes in any module will be more
densely connected to each other than to nodes
in other modules (Blondel et al. 2008, Leicht
& Newman 2008, Newman 2006). The in-
tramodular degree is a measure of the number
of connections a node makes with other nodes
in the same module. The participation coeffi-
cient is a measure of the ratio of intramodular
connectivity to intermodular connectivity for
each node (Guimera et al. 2007). These and
related metrics can be used to define nodes as
“connectors” (with high intermodular connec-
tions) or “provincials” (with low intermodular
connections). We can see that resolving the
modular or community structure of a brain
graph is likely to add important information
about which anatomical regions or tracts have
the most critical topological roles in trans-
mission of information across brain networks.
We also know from recent work that brain
networks are not only modular at a global scale,
they also demonstrate a hierarchical modularity
(Meunier et al. 2009) or nested arrangement of
modules within modules, which may be advan-
tageous in terms of stability, evolvability, and
efficiency of physical embedding of complex
networks in general (Bassett et al. 2010, Simon
1962).

Other topological metrics. There is no
shortage of topological metrics that could be
applied to brain graphs. Here we have summa-
rized only a few of the parameters that have
been most extensively investigated in the neu-
roimaging literature to date. The literature on
statistical physics of complex networks is the
primary source for many other metrics, tools,
and concepts for brain graph analysis (Albert
& Barabási 2002, Strogatz 2001). There is also
a rapidly growing literature on specialist ap-
plications to human neuroimaging and other
neurophysiological data (for recent reviews,
see Bassett & Bullmore 2006, 2009; Bullmore
et al. 2009; Bullmore & Sporns 2009; Hagmann
et al. 2010; and Wang et al. 2009). In gen-
eral, it is worth remembering that many topo-
logical metrics will be strongly correlated with
each other and with more elementary statistical
properties of the data. Different metrics often
provide convergent angles on the same aspects
of network organization: For example, a more
hub-dominated degree distribution was asso-
ciated with greater clustering of connections
in fMRI data (Lynall et al. 2010). It is corre-
spondingly unlikely that any single metric will
turn out to be uniquely important in capturing
the complexity of human brain networks (Costa
et al. 2007).

Geometric Measures

The main geometric measure on a graph is
the distance between connected nodes. This
is sometimes described for convenience as
the wiring length of a connection. In human
brain networks based on DTI or fMRI data,
most connections have short wiring length, but
the probability distribution is heavy-tailed and
there is a significant minority of long-distance
edges (see Figure 6D). Further analysis has
shown that the human brain is economically but
not minimally wired, meaning the total wiring
cost of the network (the sum of all physical dis-
tances between connected nodes) is less than
it would be if the same nodes were wired up
at random but more than if the nodes were
rewired to minimize wiring cost (Chen et al.
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2006, Kaiser & Hilgetag 2006). This observa-
tion implies that conservation of wiring cost has
been positively if not uniquely selected in evo-
lution of large-scale brain networks, and it is
compatible with much prior data and analysis
indicating that many aspects of brain anatomi-
cal organization can be approximated by wiring
minimization principles (Attwell & Laughlin
2001, Chen et al. 2006, Kaiser & Hilgetag 2006,
Niven & Laughlin 2008).

The distance is usually estimated as the
Euclidean distance between regional centroid
coordinates in stereotactic space. It might be
possible to substitute curvilinear estimates
of distance from tractographic modeling of
DTI/DSI data in the future. The distance
between regions can be used, for example, to
weight the edges of the network under study.
In this case, we could perform what is called a
weighted network analysis, in which the weights
of the edges are used in the computation of all
graph metrics calculated on the network.

Although for the most part topological and
geometric measures have remained separate
in network analysis, the interactions between
topology and space specifically for spatially em-
bedded systems such as the brain will likely
prove interesting in future. One interesting av-
enue will be to assess the spatial distribution
of graph metrics throughout the physical space
of the system. This has been done in the con-
text of other more generally spatially embed-
ded systems: The spatial distributions of cen-
trality measures have been used, for example, to
study urban street architectures (Crucitti et al.
2006). In addition to studying the spatial dis-
tributions of graph metrics, we may be able to
apply metrics that inherently blend topologi-
cal and geometric properties, such as the Rent’s
exponent. Based on work in the computer sci-
ence literature and recently applied to human
brains, the topo-physical metric known as Ren-
tian scaling has been used to quantify the cost-
efficiency of physical connectivity in terms of
both wiring and connection complexity (Bassett
et al. 2010). It is likely that additional metrics
and analysis methods will provide added insight
into the complex interaction between network

topology and physical placement in the human
brain, both functionally and structurally.

COMPARING AND VISUALIZING
BRAIN GRAPHS

Comparing Graphs

Brain graph analysis inevitably means making
comparisons between networks. For instance,
we often want to know if some aspect of brain
network organization is nonrandom. This will
mean comparing the brain network derived
from neuroimaging data to a random network
generated by computer simulation of an Erdös-
Renyı́ random graph (Erdös & Rényi 1959).
For a given number of nodes, we can generate
a large number of random graphs with some-
what variable topology and use the distribution
of topological metrics in the random graphs as a
point of reference to judge the nonrandomness
of the same metrics measured in the neuroimag-
ing data. We may also want to compare brain
graphs to minimally wired versions of the same
network, or to compare brain graphs between
groups of subjects, such as a patients and healthy
volunteers. In all these examples of compar-
ing brain graphs, it is important to observe two
golden rules (Bollobás 1985): The graphs to be
compared must have (a) the same number of
nodes and (b) the same number of edges.

This is because the quantitative values of
topological metrics will depend on both the size
and connection density of the graphs, and in or-
der to identify topological differences between
graphs that specifically point to the difference
between groups, it is important to control these
general effects before making any quantitative
comparisons. To test statistical hypotheses
about differences between groups of networks,
we would also recommend the adoption of non-
parametric techniques, e.g., permutation tests
for the difference in topological metrics be-
tween two groups of brain graphs. The distribu-
tional properties of topological metrics are not
well known, and the sample sizes in most neu-
roimaging experiments are not large, present-
ing challenges for asymptotic theory. More pos-
itively, a computationally intensive approach
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to inference by Monte Carlo simulations or
data resampling offers substantial advantages
in terms of flexibility, precision, and validity of
testing that are only discounted somewhat by
the costs entailed in greater processing time.

In addition to comparing topological
structures of entire graphs, we could focus
on subnetworks of graphs that are different
between groups. Recent progress in appli-
cations of machine learning can be used to
uncover unique subgraphs that discriminate
between two weighted (sparse or complete)
graphs (Richiardi et al. 2010), and permutation
testing on topological clusters of connections
has proven to be statistically powerful in
identification of abnormal subnetworks in
fMRI data on people with schizophrenia
(Zalesky et al. 2010a). Techniques like these
may provide a new avenue for the application
of complex network analysis to smaller subsets
of whole-brain connectivity profiles.

Visualizing Graphs

Brain graphs can be visualized in real space, as
seen in Figure 6B, to show their actual physical

structure. In a complementary visualization,
brain graphs can be plotted in topological
space. For example, nodes can be visualized
as close to each other if they are part of the
same topologically defined cluster or module
and far apart from each other if they are sep-
arated by a long path length (see Figure 6A).
Also, topological properties taken from these
brain graphs can be visualized in anatomical
space—so-called topophysical mapping. For
example, we can produce cortical surface maps
of the degree of cortical nodes, highlighting
the anatomical distribution of network hubs
(see Figure 4). See Table 1 for available
software that can be used to visualize brain
graphs.

BEYOND THE SIMPLEST GRAPHS

Directional Connections
and Causal Relationships

Network edges may be directed (drawn as ar-
rows) or undirected (drawn as lines). A directed
edge makes a claim about the causal relations
between nodes, whereas an undirected edge is

Table 1 Available tools for network analysis of brains

Human brain atlases Software Site
AAL WFU PickAtlas http://www.fmri.wfubmc.edu/cms/
Brodmann MRICRO http://www.cabiatl.com/mricro/
Freesurfer Freesurfer http://surfer.nmr.mgh.harvard.edu/
Harvard-Oxford FSL http://www.fmrib.ox.ac.uk/fsl/
LPBA40 LONI http://www.loni.ucla.edu/Atlases/
Reference networks Laboratory Site
C. elegans (N = 131,277) Kaiser http://www.biological-networks.org
Macaque (N = 95) Kaiser http://www.biological-networks.org
Macaque (N = 71,47) Sporns http://www.indiana.edu/cortex/
Macaque Visual (N = 30,32) Sporns http://www.indiana.edu/cortex/
Cat (N = 95,52) Sporns http://www.indiana.edu/cortex/
Network Toolboxes Language Site
Matlab BGL Matlab
Brain Connectivity Toolbox Matlab http://www.indiana.edu/cortex/
Brainwaver R
Network visualization Description Site
gplot Matlab http://www.mathworks.com/matlabcentral/fileexchange
Pajek Closed source http://pajek.imfm.si/doku.php
Caret Van Essen http://brainvis.wustl.edu/wiki/index.php
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agnostic about causality—it is simply a claim
about association. The directionality or causal-
ity of neuronal interactions is not always eas-
ily estimated from data. In the neural system
of C. elegans, many synaptic connections be-
tween cells are electrical (not chemical), and
this has usually been modeled as a single undi-
rected edge between neuronal nodes (Kaiser &
Hilgetag 2006, Watts & Strogatz 1998). Sim-
ilarly, most interregional axonal connections
in mammalian cortex are reciprocal, and most
graphical models of macaque and cat cortex
have had undirected edges (Kaiser & Hilgetag
2006, Sporns et al. 2004). In human neuroimag-
ing data, it is currently more difficult to assign
directionality to associations between regions,
whether measured by structural MRI, DTI,
DSI, or fMRI. Most graphs constructed from
fMRI data have therefore measured symmet-
ric measures of association or functional con-
nectivity, like simple correlation, partial corre-
lation, mutual information, or synchronization
likelihood, and constructed undirected graphs
on this basis. However, it is possible to model
directional edges (Chen & Herskovits 2007)
by using, for example, partial directed coher-
ence (Baccalá & Sameshima 2001), dynamic
causal modeling (Friston et al. 2003), structural
equation modeling (Büchel & Friston 1997), or
Granger causality (Bernasconi & König 1999)
as measures of asymmetric association or ef-
fective connectivity. To date, however, it is
unclear whether it is possible to scale these
methods to systems with more than a handful
of nodes; for the possibility of such a large-
scale analysis using structural equation mod-
eling, see Kenny et al. (2009). Computational
models have shown that more complex and bi-
ologically plausible dynamics can be generated
from directed graphs of brain anatomy based on
tract tracing data on primates than can be gen-
erated from undirected graphs based on diffu-
sion spectrum imaging data on humans (Knock
et al. 2009). It seems likely that further devel-
opment of data and methods for analysis of di-
rected brain graphs will be a priority for future
technical innovation.

Weighted Network Analysis

Although the majority of network studies of
neuroimaging data have been performed on bi-
nary or unweighted networks, in which each
edge has a weight of one and each nonedge has
a weight of zero, there has been a growing in-
terest in the use of weighted networks, in which
edges may have continuously variable weights
(see Rubinov & Sporns 2010 for a recent
review and http://sites.google.com/a/brain-
connectivity-toolbox.net/bct for the Brain
Connectivity Toolbox software library, which
provides code for many of the metrics). One
simple approach to weighted network analysis
is to start with a binary network constructed
at some cost and then assign a weight wi, j to
each edge. The weights could be the physi-
cal distance between nodes or the strength of
functional connectivity between nodes. Most
of the topological metrics available for analysis
of binary networks have been generalized for
weighted network analysis, so weighting a bi-
nary adjacency matrix does not restrict the op-
tions for topological analysis, and it does retain
more physical information in the graph model.
The weighting of brain networks by physi-
cal connection distance or wiring cost seems
likely to be of interest given the prior evidence
that wiring costs are highly economized, if not
strictly minimized, in animal nervous systems at
many spatial scales. It is likely that future studies
will increasingly use DT/SI-based measures of
anatomical connection distance between nodes
as the weights on anatomical and functional
networks.

A more radical approach, sometimes also
called weighted network analysis, is to estimate
metrics that are analogous to topological met-
rics on a thresholded graph without applying
any threshold to the association matrix. For ex-
ample, unsupervised learning methods, such as
the spin-glass algorithm, can be used to decom-
pose an association matrix into clusters that cor-
respond closely to the modules identified by
a topological analysis of the adjacency matrix
generated by thresholding the association ma-
trix (Alexander-Bloch et al. 2010). It is likely
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that there will be further consideration of ap-
proaches to network analysis that do not de-
pend on a thresholding step, but of course one
of the benefits of global thresholding is that it
will remove a proportion of the noisy or ran-
dom edges from the graph. Metrics estimated
directly on the unthresholded association ma-
trix will generally have lower signal-to-noise ra-
tios than metrics estimated on sparsely thresh-
olded graphs.

CONCLUSIONS

Graph analysis is rapidly growing in popularity
as an approach to modeling the complexity of
the human brain connectome. The fundamen-

tal motivations for graph theory as a method
of brain network analysis are its relative sim-
plicity and high degrees of generalizability and
interpretability. However, like all other model-
ing endeavors, the results of brain graph anal-
ysis are underpinned by basic assumptions or
choices, many of which will represent a trade-
off between competitive criteria. We have tried
to elucidate some of the conceptual issues and
recent methodological advances that will be rel-
evant to an investigator wanting to use these
techniques to analyze neuroimaging or other
neuroscientific data. Our hope has been to stim-
ulate informed use and further methodological
development of graph theoretical networks as
models of the human brain connectome.

SUMMARY POINTS

1. Brain graphs are apparently simple but powerful models of the brain’s structural or
functional connectome; graphical analysis is applicable to many scales and types of neu-
roscience data and is interpretable in relation to general principles of complex system
organization.

2. Key questions to address in any graphical analysis are, what is a node and what is an
edge? In neuroimaging or neurophysiological data, a node will typically be a region of
the image, or a sensor or electrode of the recording array, and edges will be defined by
thresholding a measure of statistical association between nodes. Many methodological
issues attend the specification of both nodes and edges.

3. It is recommended to explore network properties over a range of connection densities or
topological costs. Sparsely thresholded networks (with cost less than 20%) demonstrate
nonrandom properties such as small-worldness and modularity more saliently and are
more likely to be fragmented or not entirely connected.

4. Once a brain graph has been constructed, many topological and geometrical properties
can be estimated—early work has focused on broad-scale degree distributions, econom-
ical small-worldness and cost-efficiency, and modularity. These and other nonrandom
properties of network organization have been found consistently across many different
types of neuroscientific data, suggesting that they represent highly conserved general
principles of connectome organization.

5. Network analysis is relativistic—brain graphs need to be compared to each other and
to benchmark networks. In making comparisons, it is generally advisable to ensure that
the connection density and number of entirely connected nodes is equivalent between
graphs.

6. Weighted network analysis allows incorporation of more physical data, such as the con-
nection distance between nodes, in the topological analysis of network properties.
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FUTURE ISSUES

1. Scale. Early brain graph studies have typically used a few images. With the fund-
ing of the National Institutes of Health Human Connectome Project (http://
www.humanconnectomeproject.org) and the related growth of interest in graphical
analysis, we can expect publication of brain graphs based on hundreds or thousands of
subjects, allowing more powerful studies of genetic and other causes of variation in brain
graph parameters.

2. Causality. It will be necessary to optimize techniques to capture directional interac-
tions between neuronal populations and to model large causal systems as directed brain
graphs. Most human brain graph studies to date have assumed undirected edges, which
is technically simpler but neglects this biologically important aspect of neural systems.

3. Cognition. Aspects of brain graph topology have been linked to cognitive and behavioral
performance, but the relationships between psychological and topological properties of
brain networks are likely to be investigated more extensively in the future (for example,
by greater consideration of task-related functional neuroimaging data).

4. Biomarkers. The potential utility of graphical metrics as diagnostic markers of neuropsy-
chiatric syndromes will be explored on the basis of larger clinical samples and in relation
to various dysconnectivity models of schizophrenia and other disorders likely to result
from developmentally perturbed formation of the brain connectome.

5. Network movies. Most graphical analyses have provided a static view of brain func-
tional network organization over several seconds or minutes of observation; however,
rapid functional network configuration—or nonstationarity—is theoretically important
for adaptivity of cognitive function and may be studied by construction of network movies
representing time-resolved change in network architecture.
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Büchel C, Friston KJ. 1997. Modulation of connectivity in visual pathways by attention: cortical interactions

evaluated with structural equation modelling and fMRI. Cereb. Cortex 7:768–78
Buckner RL, Sepulcre J, Taludkar T, Krienen FM, Liu H, et al. 2009. Cortical hubs revealed by intrinsic

functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci.
29:1860–73

Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, et al. 2004. Wavelets and functional magnetic resonance
imaging of the human brain. Neuroimage 23:S234–49

Bullmore E, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer M. 1999. Global, voxel, and
cluster tests, by theory and permutation, for a difference between two groups of structural MR images of
the brain. IEEE Trans. Med. Imaging 18:32–42

Bullmore ET, Barnes A, Bassett DS, Fornito A, Kitzbichler MJ, et al. 2009. Generic aspects of complexity in
brain imaging data and other biological systems. Neuroimage 47:1125–34

Comprehensive review
of complex network
analysis in
neuroscience.

Bullmore ET, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nat. Rev. Neurosci. 10:186–98

Butts CT. 2008. Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11:13–41
Butts CT. 2009. Revisiting the foundations of network analysis. Science 325:414–16
Catani M, ffytche DH. 2005. The rises and falls of disconnection syndromes. Brain 128:2224–39
Chen BL, Hall DH, Chklovskii DB. 2006. Wiring optimization can relate neuronal structure and function.

Proc. Natl. Acad. Sci. USA 103:4723–28
Chen R, Herskovits EH. 2007. Graphical model-based multivariate analysis of functional magnetic resonance

data. Neuroimage 35:635–47
Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC. 2008. Revealing modular architecture of human brain

structural networks by using cortical thickness from MRI. Cereb. Cortex 18:2374–81
Cheyne D, Bakhtazad L, Gaetz W. 2006. Spatiotemporal mapping of cortical activity accompanying voluntary

movements using an event-related beamforming approach. Hum. Brain Mapp. 27:213–29
Costa LF, Rodrigues FA, Travieso G, Villas Boas PR. 2007. Characterization of complex networks: a survey

of measurements. Adv. Phys. 56:167–242
Courchesne E, Pierce K. 2005. Why the frontal cortex in autism might be talking only to itself: local over-

connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15:225–30

www.annualreviews.org • Brain Graphs 135

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
1.

7:
11

3-
14

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
xo

Sm
ith

K
lin

e 
E

nt
er

pr
is

e 
on

 0
3/

31
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



CP07CH05-Bullmore ARI 9 March 2011 21:34

Crucitti P, Latora V, Porta S. 2006. Centrality measures in spatial networks of urban streets. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 73:036125

David O, Cosmelli D, Friston KJ. 2004. Evaluation of different measures of functional connectivity using a
neural mass model. Neuroimage 21:659–73

de Haan W, Pijnenburg YA, Strijers RL, Van Der Made Y, Van Der Flier WM, et al. 2009. Functional neural
network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC
Neurosci. 10:101

de Vico Fallani F, Astolfi L, Cincotti F, Mattia D, la Rocca D, et al. 2009. Evaluation of the brain network
organization from EEG signals: a preliminary evidence in stroke patient. Anat. Rec. (Hoboken) 292:2023–31

de Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, et al. 2008a. Cortical network dynamics
during foot movements. Neuroinformatics 6:23–34

de Vico Fallani F, Sinatra R, Astolfi L, Mattia D, Cincotti F, et al. 2008b. Community structure of cortical
networks in spinal cord injured patients. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008:3995–98

Dehaene S, Naccache L. 2001. Towards a cognitive neuroscience of consciousness: basic evidence and a
workspace framework. Cognition 79:1–37

Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, et al. 2009. Reproducibility of graph metrics
of human brain functional networks. Neuroimage 47:1460–68

Eguı́luz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. 2005. Scale-free brain functional networks.
Phys. Rev. Lett. 94:018102
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
From data to association matrix. (A) An anatomical template image (left) is used to parcellate the voxel-level fMRI data. Regional mean
time series (middle) are estimated for each of the N = 90 regions in the parcellation template. The pair-wise association ai, j is
estimated between the ith and jth nodes, i �= j = 1, 2, 3, . . . , N and compiled for all possible pairs to form a {N × N} interregional
association matrix, A (right). If we choose the measure of association to be the absolute Pearson’s correlation between two time series,
then this value ranges between 0 and 1. (B) For EEG or MEG data, neurophysiological time series are measured by an array of sensors
(left), each of which provides a nodal time series (middle) at frequencies generally higher than those measured by fMRI. Due to this
increase in temporal resolution, a wide variety of association metrics can be applied, including mutual information, synchronization,
and phase coherence (right), to construct an association matrix. (C) Several morphometric variables can be computed on a regional basis
(left) from individual structural MRI images, including gray matter volume, cortical thickness, surface area, and curvature (middle). The
correlation or partial correlation of these regional morphometric variables over subjects provides an association matrix (right), which
can be used as a measure of anatomical connectivity (Lerch et al. 2006).
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5
From association matrix to adjacency matrix. (A) The association matrix represents the absolute value of all pair-wise wavelet
correlations estimated for a single fMRI dataset (see Achard et al. 2006). The 90 nodal regions of the Automated Anatomical Labeling
(AAL) template are ordered into left and right hemispheres, and then into six anatomical clusters (medial temporal, subcortical,
occipital, frontal, temporal, parietal) as defined by Salvador et al. (2005a). (B) The three adjacency matrices shown were obtained by
thresholding the association matrix in A at costs of κ = 0.15 (left), κ = 0.30 (middle), and κ = 0.45 (right). White elements in the
adjacency matrices indicate the existence of an edge, and black elements indicate the absence of an edge. Note that the density of
connections or topological cost of the matrix increases with decreasing threshold. (C) Plot of the connection density or cost (x-axis) as a
function of the threshold applied to the association matrix ( y-axis) to construct the adjacency matrix; association matrices thresholded at
higher values will have fewer edges than those thresholded at lower values. Colored lines in the plot indicate the costs at which the
three adjacency matrices shown in B were calculated.
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 6
Topological and geometrical properties of functional brain graphs. (A) For a single fMRI dataset, we calculated the adjacency matrix at
a cost of κ = 0.05, and the edges present in this adjacency matrix were plotted here in topological space so that the distance between
nodes is larger if those nodes are separated by a longer path length and smaller if they are separated by a shorter topological path
length. The size of nodes indicates nodal degree whereas the color of the node indicates its lobar identity. (B) Brain graph plotted in
physical space where the distance between nodes is the Euclidean distance between regional centroids in the anatomical space of the
real brain. The size of nodes indicates nodal degree whereas the color of the node indicates its lobar identity. (C) Plot of the degree
distribution (red ) and distribution fit (black) of the brain graph, showing the predominance of low-degree nodes and the presence of a
few high-degree hubs. (D) Plot of the distribution of physical distance of connections of the brain graph (red ) in comparison to the
distance distribution in a minimally rewired network ( black). (E) Plot of global efficiency versus cost for the brain network (red ) and a
distribution of 100 comparable random networks (black). (F) Plot of local efficiency versus cost for the brain network (red ) and
a distribution of 100 comparable random networks (black). (G) Plot of the cost-efficiency versus cost for the brain network (red ) and a
distribution of 100 comparable random networks (black). (H) Plot of small-worldness versus cost for the brain network (red ). The
small-worldness scalar σ = 1 in a random graph.
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